codomain - définition. Qu'est-ce que codomain
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est codomain - définition

TARGET SET OF A MATHEMATICAL FUNCTION
Function codomain; Co-domain; Target set; Target of a function; Codomain (mathematics)
  • f}}.

codomain         
<theory> The set of values or type containing all possible results of a function. The codomain of a function f of type D -> C is C. A function's image is a subset of its codomain. (1994-12-23)
codomain         
['k??d?(?)me?n]
¦ noun Mathematics a set that includes all the possible values of a given function.
Codomain         
In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation .

Wikipédia

Codomain

In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set Y in the notation f: XY. The term range is sometimes ambiguously used to refer to either the codomain or image of a function.

A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the image of f. The image of a function is a subset of its codomain so it might not coincide with it. Namely, a function that is not surjective has elements y in its codomain for which the equation f(x) = y does not have a solution.

A codomain is not part of a function f if f is defined as just a graph. For example in set theory it is desirable to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition functions do not have a codomain, although some authors still use it informally after introducing a function in the form f: XY.